Project Manager: Tao Zhang Overview Concept Planner: Todor Stojanovski

Director of Finance and Risk Department: Agnese Balode Director of Energy Department: Francisco J. Márquez Fernández Director of Education Department: Tao Zhang Director of Infrastructure: Todor Stojanovski

Consultants

Stockholm 2005

Cooperation: Chilean Energy Commission, UNDP and GEF

Company:	5 G	С	0	n	S	U		t a	r	ר t	S
Date:		2	0	0	5	-	0	2	_	1	9

Project for Energy and Power System Supply for Easter Island (Rapa Nui) using Renewable Energies

CONTENT

Abst	Abstract					
Intro	2					
Over	view of the Project	2				
1.	Education	3				
2.	The Choice of Renewable Energy	3				
3.	Overview for Renewable Energy Supply	3				
4.	The Description of Energy Supply	3				
Proje	ect Finance Management Plan	4				
Risk	Risk management					
Proje	5					
Refe	Reference					

Abstract

Basically the Project Management Plan for Energy and Power Supply for Easter Island Using Renewable Energies Project has a defined route map. This map includes project introduction, overview of the project, detail planning and schedule, risk management, and project cost and benefit analysis project.

Introduction

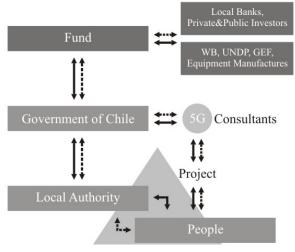


Figure 1: Operation Structure of the Project

5G Consultants are proposing this project on the Tender of Chilean government for energy and power supply for Easter Island using renewable energies as part of Chilean strategic plan to improve access to basic services in isolated areas by exploiting alternative sources of energy and transferring applicable knowledge. 5G Consultants provide consultation and management services to Government of Chile and Local authority of Isla De Pascua for this project. The concept of this project can be found in <u>Appendix 1</u>. 5G Consultants' main goal is to create public preference

oriented project, which will integrate education, infrastructure and energy into independent system of renewable energy production combined with

environmental awareness. 5G Consultants are proposing experimental models of infrastructure and energy which are coordinated by Centro Educacional para el fomento de las energías Renovables, Ecoturismo y Conservación del Patrimonio(CEREC) that serves the local community from social, energy, environmental, infrastructure and economics perspective.

Overview of the Project

In order to fulfill the final target:

- Provide Easter Island with continuous electricity and hot water supply using renewable energies
- Transfer technology to the local public, and create employment opportunities
- Contribute to the island's development and improve local public's living quality

The project addresses three objectives:

- Three renewable energies are planned to be used in Easter Island, which are geothermal, biogas and thermal solar, in order to get the best solution for local economy, energy demand, population growth and natural resources.

- Technology transfer in order to achieve the maximum value of local human resources and natural resources and educate the islanders with environmental management and renewable energy technology, cultural changes and preserving of tradition, and create additional employment opportunities.

-Associated infrastructure as the accessory for energy transportation and distribution is planned in this project to provide the end-users' energy demand.

The project framework is attached in the <u>Appendix-2</u> as GANTT Chart.

Detail Planning and Schedule

1. Education

Education, as the first step of the whole project, holds the obligation to reduce resources and social risk and to ensure the fulfillment of the project. Technology transfer as one part of the education fulfills the obligation to help islanders make some product locally in order to reduce investment and cost for backup equipment and operation. The measurement steps are explained below and the detailed explanation is attached in the <u>Appendix-3</u>.

- Adaptation Measurement is the initial stage for information collection and technology settlement.

- Adaptability Enhancement is to build "Know How" system and to educate islanders to build their own better island.

2. The Choice of Renewable Energy

The choices of the renewable energy are based on a comprehensive comparison. The contents include the local information, which is studied from the Tender for the Government of Chile, the current market situation, cost, risk, environmental impact, the technology developing stage, the advantage and disadvantage of each energy, and the feasibility based on social and environmental reasons. The five candidates are: Wind Energy, Solar thermal Energy, Biogas Energy, Geothermal Energy and Wave and Tidal Energy. The table of comparison is in <u>Appendix-4</u>. *The final choices are:*

- Thermal Solar energy for hot water supply in Easter Island
- Biogas for islanders' cooking resource
- Geothermal Energy for power supply in Easter Island

3. Overview for Renewable Energy Supply

The settlement of renewable energy supply will be divided into two steps.

- The First Step: supply hot water by install Solar Thermal Collector into houses and public buildings. This phase considers a part of the education program, and it would last for two years for the whole island. In the mean time, the current thermo-electric plants will keep running for the electricity supply and propane gas will still be used as cooking resources in the island.
- The Second Step: Twenty wastewater treatment plants and biogas plants will be built in the city of Hanga Roa, integrated in the neighborhoods pyramids. The biogas will be used as cooking resource. A six MW geothermal energy plant appears as the best choice for electricity supply. Building works for the plant will take three years, and they will be based on previous research. In this stage, the application of thermo-electric plant and propane gas will be progressively decreased.

4. The Description of Energy Supply

- *Hot Water Supply*: Considering the advantaged climate in Easter Island, together with the mature technology and low cost, the **thermal solar system** is the best choice for the hot water supply in the local place. *The solar hot water system is easy to install and operate. Householders are free to participate on the educational program and build their own collector system, or buy a "ready to install" one.* The final installation and inspection will be done by technicians. Description of thermal solar system in <u>Appendix-5</u>.

Technology: Indirect water heating system (2 water circuits). Plane collectors with glass cover. The Total Cost for all the houses: 2,158,000 USD

- *Cooking:* The absence of wastewater treatment system in Easter Island has a high potential in polluting underground water (drinking water source in Rapa Nui). *The build of biogas plant with a wastewater treatment plant can solve both cooking resource and the water pollution problems.* The biogas will be bottled and distributed in the same way it is done now. Description of biogas plant is in <u>Appendix-5</u>.

Energy Source: Human waste and animal waste, mainly using cow waste Technology: Anaerobic digestion Total Cost: 1,200,000 USD (60, 000 USD per plant) Capacity: 98100Kg/year

- *Electricity:* The local geothermal resource is hot liquid with temperatures greater than about 200 $^{\circ}$ C (World Energy Council, 2001) and the temperature is suitable for power plant. Moreover, considering the high potential of geothermal in local place, the geothermal energy is decided to be the electricity supplier in Easter Island. Description of geothermal power plant and detailed costs are in <u>Appendix-5</u>.

Technology: binary plant, based on kalina cycle Capacity: 6 MW Total Cost: 6,024,000USD (includes research, design, exploration, development and construction) Approximate Oil Saving: 98%

5. The Upgrade for Local Infrastructure

Associated local infrastructure system is necessary for the future application of renewable energy. The upgrade of infrastructure system is listed below. *However, firstly the possibility of using current infrastructure will be studied as one part of education.* Moreover the wastewater treatment plant was considered as one part of infrastructure, which services to reduce pollution and provide raw material for biogas digester.

- *For Thermal Solar Energy*: Installing hot water solar collectors, reinforce the roofs of local houses, hot water supply system rebuilding in single house

- *For biogas plants*: Wastewater transportation system upgrade, the build of wastewater treatment plant, and the transportation of biogas to the local families

- *For geothermal power plant*: rebuilding power lines and appropriate safeguard for potential environmental impact from geothermal plants and other infrastructures

Description of upgrade local infrastructure is attached in Appendix-6.

Project Finance Management Plan

According the Project planning Finance Management Plan is made. The first stage in project implementation is establishment of *Centro Educacional para el fomento de las energías Renovables, Ecoturismo y Conservación del Patrimonio (CEREC)*. The next stage is development of infrastructure and energy part (see Appendix-2).

Chose strategy for Project Finance Management Plan is portfolio - financing mechanism.

Chilean government has set strategic targets to be achieved with assistance of World Bank. Therefore as coherent is chose to use UNDP and GEF mechanism Special Purpose Fund in order to manage the found made form Risk Capital, Mezzanine finance and Consumer Finance (UNEP, 2004). Risk Capital approach

is used if equity investment comes from strategic investors - equipment and material manufacturers (44% from total portfolio). Mezzanine finance instrument is used in developing countries and groups together financing package characterized as "high risk/high upside equity position and the lower risk/fixed returns debt position" (47% from total portfolio). Consumer Finance approach involves risk sharing at the local and institutional levels (9% from total portfolio).

Risk management

Chosen risk management approach for Energy and Power System supply for Easter Island is risk diversification through portfolio effect and risk sharing arrangements. In order to 'smoothing' cash flow Revenue / Income Protection mechanisms are considered as necessary.

The risks can be divided in four groups:

- To deliver the project to society and minimize risk that the project will be not accepted, vast education programme is foreseen as part of the project.
- To minimize the risk of interrupted power supply, the Energy and Power Supply System in Easter Islands is proposed to be organized as follows: hot water supply for single housing and public service is based on solar thermal hot water system; cooking from biogas energy. Standby power supply is ensured from geothermal electricity generation plant. Industrial and public facilities receive power supply from geothermal electricity generation plant and for primary importance objects alternative power supply is ensured.
- Technology dependent risks and means of mitigation are listed in Appendix-7.

Financial risk management instruments adapted for Renewable Energy Technology are Alternative Risk Transfer products, particularly, Finite Risk and Contingent Capital Programs. As a risk management measure, mitigation against possible adverse external events Chilean Government has selected the Deferred Draw-down Option (Chile CSA, 2005).

Project Cost Benefit and Feasibility Analysis

The total physical input for the Easter Island project is 9 384 326 USD.

The cost benefit analysis and feasibility studies for business sector and society see in <u>Appendix 8 and 9(A,B)</u>. Feasibility studies show that the project will increase communities' economic welfare. (MNDP, 2005) Project creates social benefits greater than social costs (soc-ec. benefits 3,7 Mil \$ and soc-ec. costs 1,6 Mil \$).

Investment Issues	Amount (USD)
Total	9 384 326
Education & research institute	300 000
Upgrading of the Rural Area Single Family Houses as Single Systems	326 040
Upgrading of the Base Neighborhoods and Construction of 20 Pyramids	2 668 286
Geothermal electricity – generation plant	6 054 000
Research and consultancy	36 000

 Table 1: Investment Issues and Total Cost

Reference

- 1. Artech House (2004) Project Management Process Improvement, Robert K. Wysocki, ISBN 1-58053-717-0, Boston. London
- Blackwell Science (2001) Engineering Project Appraisal, Martin Rogers, ISBN 0-632-05606-1, Oxford Oxford OX2 0EL
- 3. South Pacific Organization (2005) Finding Easter Island accessed on 19.02.2005 http://www.southpacific.org/text/finding_easter.html
- 4. Country Paper: Japan (2000) Technology Transfer Workshop for Asia and the Pacific, Japanese Participants for Asia and Pacific
- 5. March, 2004 A white Book for R&D of Energy Efficient technologies Steps- Towards a Sustainable Development Chapter 6: The Innovation System Supporting the Development Towards a 2000 Watt per Capita Society, Eberhard Jochem
- International Institute of the *IOGT-NTO* Movement in Sweden (2003), FORUT in Sri Lanka Policy and Strategy 2003-2007, FORUT Sri Lanka & FORUT Norway, Sweden
- 7. Stockholm Environmental Institute (1998) Renewable Energy Power for a Sustainable Future, Godfrey Boyle, Oxford, United Kingdom
- 8. Tao Zhang's meeting with Herbert Henkel, Ass. prof., Geophysics Department, KTH

9. World Energy Council Homepage (2005) Extract from the Survey of Energy Resources 2001 accessed on 19.02.2005

http://www.worldenergy.org/wec-geis/edc/countries/Argentina.asp

- 10. Loughborough University (2005) Using Human Waste accessed on 19.02.2005 http://www.lboro.ac.uk/well/resources/technical-briefs/63-using-human-waste.pdf
- 11. MCON BIO (2001), Inc- waste of energy, energy of waste accessed on 19.02.2005 http://www.mconbio.com/Biogas/biogas.html
- 12. Geothermal Energy for Electric Power, A REEP Issue Brief, Dec. 2003, Mashashi. Shibaki
- 13. PROSOL PROGRAM (Spain 2005) accesed on 19.02.2005

http://www.sodean.es/prosol/

- 14. Easter Island homepage (2004) *Easter Island homepage* accessed on 17.02.2005 http://www.netaxs.com/~trance/rapanui.html
- 15. Rapa Nui News (2004) *Rapa Nui News Vol. 2* accessed on 17.02.2005 http://www.netaxs.com/~trance/news2.html
- 16. Minderman Nicholas, Ruelle Delphine, Stojanovski Todor, Thitimakorn Kriangkrai (2004) A Sustainable Housing Program in Kapellgärdet, Uppsala accessed 02.02.2005 http://www.ts.tzsis.com/kth/hsh.pdf
- 17. Bradshaw Foundation (2004) *Easter Island Rock Art and Statues of Rapa Nui* accessed 12.02.2005 http://www.bradshawfoundation.com/easter/
- 18. The Guardian (2002) *Thor Heyerdahl Article by Jo Anne Van Tilburg* accessed 12.02.2005 http://www.guardian.co.uk/Archive/Article/0,4273,4397210,00.html
- 19. Chile CSA (Chile Country Assistance Strategy) (2005) accessed 29.01.2005 http://www.worldbank.org
- 20. Willis (2003). Marketplace Realities and Risk Management Solutions. Global Perspectives 2003 accessed 30.01.2005

http://www.willis.com/willisnl/bestanden/marketplace_realities.pdf

21. WB&GEF (World Bank & GEF) (2004) *World Bank GEF Energy Efficiency Portfolio Review and Practitioners' Handbook* Thematic Discussion Paper January 21, 2004 accessed 12.02.2005

http://lnweb18.worldbank.org/ESSD/envext.nsf/46ByDocName/WorldBankGEFEnergyEfficiencyPortfolio

- 22. ReviewandPractitionersHandbook/\$FILE/WBGEFEnergyEfficiencyHandbook2004.pdf
- 23. UNEP (2004) Financial Risk Management Instruments for Renewable Energy Main results from UNEP study accessed 05.02.2005

http://www.energy-base.org/sef_bonn/pub/sef_presentations/A1_hughes.pdf

- 24. MNDP (Malta's National Development Plan) (2005) *Guide to Cost-Benefit Analysis of Major Projects In the context of EC Regional Policy 1997 edition* accessed 30.01.2005 http://www.ndp.gov.mt/pdf/reference_02.pdf
- 25. UN (United Nations) Financial Risk Management Instruments for Renewable Energy Projects United Nations Environment Programme Summary document accessed 05.02.2005 http://www.uneptie.org
- 26. Chile Instituto National de Estadisticas accessed 14.02.2005 http://www.ine.cl/buscar.php

		-				APPENDIX 2 Rapa Nui GANTT Chart	
┦	Task Name Rapa Nui Project	Duration 895 days	Start Wed 05-2-2	Finish Tue 08-7-8	Predecessors	Resource Names	2nd 1st H 2nd 1st H 2nd 1st H 2n
1							
ļ	Education Baseline Research Project for Infrastructure and	430 days 2 mons	Wed 05-2-2	Tue 06-9-26 Tue 05-3-29		Environmentalist, Economist, Architect, Engineer[300%], Money[36, 000]	Environmentalist,Economist,/
	Energy and enhance the public awareness towards the project	2 110115	1100 00 2 2	140 00 0 25			
	Establishing the CEREC for Renewables, Preservation of Cultural Heritage and Eco-tourism	3 mons	Wed 05-3-30	Tue 05-6-21	4	Money[20,000]	Money[20,000]
	Sustainability Seminars and Training for the Local Community	170 days	Wed 05-6-22	Tue 06-2-14	5		
ł	Seminar on the Concepts of Sustainability	1 wk	Wed 05-6-22	Tue 05-6-28	5	Money[1,060],Environmentalist,Economist,Social Scientist	Money[1,060],Environment
Ì	Seminar on Cultural Changes and Preserving of Tradition	2 wks	Wed 05-7-20	Tue 05-8-2	7FS+15 days	Money[2,130],Social Scientist	Money[2,130],Social Scien
ł	Seminar on Hot Water Collector Systems	2 wks	Wed 05-8-24	Tue 05-9-6	8FS+15 days	Money[2,130],Engineer	Money[2,130],Engineer
ł	Seminar on Photovoltaic Collectors Systems	1 wk	Wed 05-9-28	Tue 05-10-4	9FS+15 days	Money[1,060],Engineer	Money[1,060],Engineer
┦	Seminar on Renewable Energy Systems	2 wks	Wed 05-10-26	Tue 05-11-8	10FS+15 days	Money[2,130],Engineer	Money[2,130],Enginee
┥	Seminar on Saving Water and Energy	3 wks	Wed 05-11-30	Tue 05-12-20	11FS+15 days	Money[3,200],Environmentalist,Economist,Social Scientist	Money[3,200],Enviro
	Seminar on Green Sign Product Consumption	1 wk	Wed 06-1-11	Tue 06-1-17	12FS+15 days	Money[1,060],Environmentalist,Economist,Social Scientist	Money[1,060],Enviro
	Seminar on Grey Water Treatment Systems	1 wk	Wed 06-2-8	Tue 06-2-14	13FS+15 days	Money[1,060],Engineer	Money[1,060],Engi
	Seminar on Wastewater Treatment Systems	2 wks	Wed 05-6-22	Tue 05-7-5		Money[2,130],Engineer	Money[2,130],Engineer
	Research Projects, Monitoring and Evaluation	160 days	Wed 06-2-15	Tue 06-9-26	28,6		
	Public Participation	1 mon	Wed 06-2-15	Tue 06-3-14		Architect,Engineer,Social Scientist,Environmentalist,Economist,Money[6,000],Lawyer	Architect,Enginee
	Research project for the location of the Geothermal plant	3 mons	Wed 06-3-15	Tue 06-6-6	17,4	Engineer[300%],Environmentalist,Social Scientist,Economist,Worker[200%],Money[100,000]	Engineer[300%
	Review of the Strategy Project for Energy and Infrastructure project	1 mon	Wed 06-6-7	Tue 06-7-4	18	Architect,Engineer[300%],Social Scientist,Environmentalist,Economist,Money[6,000],Lawyer	-Architect,Eng
	Research and Monitoring project for installated hot-water collectors	3 mons	Wed 06-7-5	Tue 06-9-26	19	Engineer,Handyman,Worker[200%],Money[4,000]	Engineer,H
1							
1	Infrastructure	785 days	Wed 05-3-30	Tue 08-4-1			
	Strategy Project for Infrastructure	65 days	Wed 05-3-30	Tue 05-6-28			
	Design of the Project First Version of the Project	2 mons 0 mons	Wed 05-3-30 Tue 05-5-24	Tue 05-5-24 Tue 05-5-24		Environmentalist,Economist,Architect,Engineer[300%],Money[30,000]	Environmentalist,Economis
	Public Participation	1 wk	Wed 05-5-25	Tue 05-5-24		Money[1,000],Environmentalist,Architect,Social Scientist,Engineer,Economist	Money[1,000],Environmenta
	Review of the Project and Final Decision	1 mon	Wed 05-6-1	Tue 05-6-28		Environmentalist, Economist, Architect, Engineer (300%), Money [10,000]	Environmentalist,Economi
┥	Final Version of the Project	0 mons	Tue 05-6-28	Tue 05-6-28	27		6-28
┥	Construction Phase	720 days	Wed 05-6-29	Tue 08-4-1	28		
1	Upgrade of Single Family Houses (rural area	160 days	Wed 05-6-29	Tue 06-2-7	28	Money[273,700],Architect,Engineer,Handyman[500%],Machine[1],Worker[1,200%]	
1	Installing Hot Water Solar Collector System	32 wks	Wed 05-6-29	Tue 06-2-7		Worker[4,000%],Money[320,000]	-Worker[4,000%],Mc
	Upgrade of Base Neighborhood and Constructing Pyramid	720 days	Wed 05-6-29	Tue 08-4-1	28	Architect,Engineer[300%],Handyman[2,000%],Machine[6],Worker[4,000%],Money[1,825,000],Craftsman[2,000%]	
1	Constructing the Pyramids (biogas and wa	36 mons	Wed 05-6-29	Tue 08-4-1	28	Engineer[200%],Money[1,900,000],Worker[800%],Handyman[200%]	
	Wastewater Pipelines	36 mons	Wed 05-6-29	Tue 08-4-1	28	Engineer[200%],Worker[800%],Handyman[200%],Money[40,000]	
1	Upgrading of Single Family Houses (Hanga Roa)	20 mons	Wed 06-2-8	Tue 07-8-21	28,31	Worker[4,000%],Money[776,286]	
- 1							
	Energy	545 days	Wed 06-6-7	Tue 08-7-8			
	Strategy Project for Energy	65 days	Wed 06-6-7	Tue 06-9-5			
	Design of the Energy Strategy Project	2 mons	Wed 06-6-7	Tue 06-8-1		Engineer[300%],Environmentalist,Economist,Money[57,000]	Engineer[300
		1 wk	Wed 06-8-2	Tue 06-8-8		Engineer[300%],Environmentalist,Economist,Money[3,000]	Engineer[300
	Public Participation	1 mon	Wed 06-8-9	Tue 06-9-5 Tue 06-9-5		Engineer[300%],Environmentalist,Economist,Money[30,000]	Engineer[30
	Review of the Project and Final Decision			100-0-9-0	1		9-5
	Review of the Project and Final Decision Final Version of the Project	0 mons	Tue 06-9-5 Wed 06-9-6	Tue 08-7-8	42		
	Review of the Project and Final Decision		Tue 06-9-5 Wed 06-9-6 Wed 06-9-6	Tue 08-7-8 Tue 06-10-17	42	Engineer[300%],Machine[1],Worker[1,000%],Money[357,000]	
	Review of the Project and Final Decision Final Version of the Project Geotermal Plant	0 mons 480 days	Wed 06-9-6			Engineer[300%],Machine[1],Worker[1,000%],Money[357,000] Engineer[300%],Machine[1],Worker[1,000%],Money[357,000]	Engineer[3
	Review of the Project and Final Decision Final Version of the Project Geotermal Plant Prospection Phase	0 mons 480 days 6 wks	Wed 06-9-6 Wed 06-9-6	Tue 06-10-17	44		Engineer[

nd	1st H	2nd	1st H	2nd	1st H	2nd	1st H	2nd	1st H	2nd	1st H	2nd	1st H	2nd	1st H	
gine	er[300	%],Mo	ney[3	6,000]												
nist	,Socia	Scier	ntist													
con	omist	Socia	Scien	tist												
	nomis															
		,														
entis	st,Envi	ronme	entalis	,Econ	omist,	Money	/[6,00 0],Lawy	rer							
nta	list,So	ial Sc	ientist	,Econ	omist,	Worke	r[200%	6],Mon	ey[100),000]						
Soc	ial Sci	entist,	Enviro	nmen	talist,E	Econor	nist,M	oney[6	,000],I	Lawye	r					
	-12000	(1 Ma		1001												
DIKE	er[200%	₀],ivior	iey[4,u	100]												
ngi	neer[3	00%],N	/loney	30,000	9]											
t,So	ocial S	cientis	st,Engi	neer,E	conor	nist										
Eng	ineer[300%]	Mone	y[10,00	00]											
]																
nee	r[200%	l.Mor	ev[1 0	00 000	1.Worl	cer[800)%1 на	ndyma	an[200	%1						
								oney[4								
	,Mone			, , , ,				- 71 *	, . 1							
		,														
	talist,E															
	talist,E															
me	ntalist	Econo	omist,N	loney	30,000)]										
],Worl															
	[1],Wo															
ngi	neer[3	00%],A	Archite	ct,Mac	hine[6	6],Han	dyman	[400%],Worl	(er[2,0	00%],I	Noney	3,500,	000]		
xte	rnal Mi	estone	•				Deadli	ne		Ŷ						1

The Comparation of Different Renewable Energy								
nergy (Solar thermal energy)	Biomass/Biogas Energy	Geothermal Energy	Wave and Tidal Energy					
400-500W/m2	Available resources include sewage sludge, waste water and animal waste	The Island has a high geothermal potential from the non-active volcanoes.Based on the research for Chile, The type of resource should be high temperature hot water	Energy capacity 30-40 kW/m					
nergy,clean and without	1. Systems can be heat only, electricity only	1.Reduce emission of green house gases and minimal land use.	Different system types will have different					

Resource Siutaion in Easter Island	The average annual wind speed is around 4m/s, and the monthly peak is 19.2m/s.	400-500W/m2	Available resources include sewage sludge, waste water and animal waste	The Island has a high geothermal potential from the non-active volcanoes.Based on the research for Chile, The type of resource should be high temperature hot water	Energy capacity 30-40 kW/m
		1.Green energy,clean and without emissions to the air. 2.Solar energy is free. 3.If possible, the existing pipes still can be used for hot water in single house.	1. Systems can be heat only, electricity only or both. 2. The daily waste can be used locally and improve the local sanitation situation and decrease the ground water pollution from infiltration of black water.	 Reduce emission of green house gases and minimal land use. Locally available – reduce reliance on fossil fuel. Reliable because it can supply power 24 hours. 	Different system types will have different advantage. The main advantage for the off- shore system is the operation of the plant is easy and has little visual impact.
Disadvantage	 Expensive as compared to conventional source of electricity,especially as hot water supply resource is extremely expensive. Wind is intermittent and it does not always blow when electricity is needed, thus needs energy storage devise or back up system. 	The technology has the shortages like depending on the weather,especially the sunlight intensity , hot water is not available during the night.	1. The emission can not be avoided but can be offset against reduced need for energy generation.The emission is lower than the conventional energy plant.	1.High initial investment cost and sometimes difficult task to reach the source, but different based on local situation. 2.Release of hydrogen sulfide and disposal of geothermal fluid affect human health, and thus good air quality has to be maintained in the plant.	1. High initial investment cost 2.For the on- shore system, the visual impact should be considered and for the off-shore system, the operation is much more diffcult. For both systems, the suitable location for wave and tidal energy plant is rather rare and civil engineering work is difficult on a wave- exposed shore.
Environmental Impact (Visual Impact)	ecosystems, may not be that much considerable as the Island doesn't need large wind farm. Other impacts are affecting birds life,high accidents and interference	The environmental impact was considered very small. The materials used are those of everyday buildingand plumbing. Solar collectors can have a small visual impacton house, but can be avoided by using new product.	Energy recovered is renewable and can offset non-renewable sources and contributes to reducing anthropogenic sources of greenhouse gases. It contributes to sustainable waste management. Moreover, nutrients can be returned to the land and the effect to the farm will be lower and in the mean time, it help to improve soil structure due to the application of organic matter. Because the plant we considered is underground, so there is no visual impact.	The impacts show as deposition of wastesoil and drill mud, and steam and spray can have a small adverse effect on the local vegetation with trees and grass being scalded, small subsidence and increased microseismic activity, and small release of hydrogen sulfide and disposal of geothermal fluid, and also mminimal emissions of CO2. The plant is not considered with high visual impact.	Wave and Tidal Energy are green energy, but they still have some environmental impacts. The sheltering effect is the one should be considered and also the effect to the local fishing industry. The main environmental impacts of tidal energy are due to the changes of water levels which modify currents, and sediment transport and deposit. On-shore system has large visual impactthe off-shore system has little visual impact.
	Wind energy has matured, but it is far from being a mature technology.	Solar thermal applications have been proven to be durable and reliable and therefore can be considered as a fairly mature technology. It is a proven technology for domestic water heating (household and large scale), and for swimming pool heating.	Technologies for digester of sewage sludge, industrial sludges and waste water are fully commercialised.	1. Heat exchange technology and heat pumps are widely available. 2.Hot Dry Rock technology is still in an early research and development phase. In this project, the type of resources is hot water.	The variability of real ocean waves represents a problem for wave energy utilization. The effect between different basin in tidal system make the efficiency of turbines much lower than the design efficiency.
	Wind energy has shown strong growth over	Domestic water heating for households is the main application around the world. Today's marketplace offers high quality products and the installation of reliable systems.		For hot waters extracted from aquifers at moderate temperatures, in the range 50°C to 150°C, can be used for heating purposes including district heating. Higher temperatures of 150°C+ allow electricity to be produced.	1.Many wave energy devices remain at the research and development stage and have not yet to enter the market. 2.Several tidal barrage sites is studied worldwide,but these studies have not led to industrial implementation,plus the planning and construction times for tidal are typically long at 5 to 10 years.So the current market situation is not satisfied.
Total Cost in Easter Island Project	16.95Million USD	1.082 Million USD	1.2 Million USD	6.0 Million USD	61.2 Million USD
Risk	 Uncertainty in the power purchase price is one risk. Plant life and reliability is low. Uncertainties in the resource is another problem. 	1.The technology has been proven to be reliable, therefore technical risk is low.	1. This area of risk needs to be addressed on a country by country basis due to varying circumstances. 2. The current uncertainty in markets for the digestate represents a commercial risk which impacts on the technology's costs.	1.Regarded as a high risk investment relative to other forms of energy production. 2.Technologies which attract a high risk premium are difficult to finance without insurance policies. In this project, the reource is high potential and the information was proved by specialist.So the risk could be lower,	1.Many current uncertainties on cost and performance make the technology with high risk. 2.Most wave energy technologies have yet to develop a proven track record. 3.Tidal energy projects require very high capital expenditure at the outset, and so have relatively long construction periods and low load factors, leading to long payback periods.
Limitations in Easter Island Project	nour wind speed data to determine its feasibility. Currently, no sufficient data is	The data of daily sunlight intensity should be provided.Currently,the result of energy capacity and cost is based on the annual average temperature. The cost result will have small changes.	No technology limitation in this currently.	Need further research on type of resources and detail exploration report.	Need much more detailed wave and tidal data.
	The average annual wind velocity is not so encouraging for efficient and economical reasons in Easter Island Project.	is considered in the concent of housing part	The low cost,ease to operate and without technology limitation in this project make the biogas energy become a good choice in current stage. In this project, the biogas was considered as low risk. Biogas is feasible in this project.	Geothermal can be used in Easter Island due to the high potentiality,but further research are strongly supported.	The effect to fisher men must be considered and the initial cost is higher than the other renewable energy. Many uncertainties make the wave energy not feasible in this project.

Solar Energy (Solar thermal energy)

Wind Energy

Main Data Source: 1.Home of BEER(2003) Renewable Energy accessed on 19-02-2005 http://www.arch.hku.hk/research/BEER/renew.htm

Education Methodology

Objectives

- Baseline research as the foundation of the fulfillment of the project in renewable energy resources and social-economy field
- Technology education transfer based on the project's need and local public's willingness to learn
- Generate public interest and support together with culture- economy knowledge transfer

Barriers

Based on the initial communication with Georgia Lee, Ph.D. & Easter Island Foundation and Jo Anne Van Tilburg, Ph.D. & Director of Easter Island Statue Project, and the current investigation, this project addresses the potential technology and social barriers in *Table 1*.

Approach

Due to the high risk of the project and in order to ensure the success of it, *Centro Educacional para el fomento de las energías Renovables, Ecoturismo y Conservación del Patrimonio (CEREC)* will be established in Easter Island working on conquering the barriers. The approach methods and measurements are listed in *Table 1*.

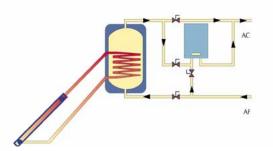
Future Directions

- Continued renewable research and its application and contribution in local economy
- Transfer cultural heritage and preserving of tradition, sustainability and environmental protection knowledge to Easter Islanders

		Table 2: Local Barriers and Approach Processes
	Barriers	Approach Method and Measurements
	Insufficient renewable energy	At the beginning, a serial of researches will be processed in order to find
	resources information	the best location for the geothermal plant and detailed local climate
		condition to ensure the accuracy of the chosen technology.
	Construction land use and	Different measurements will be taken based on whose land will be used
	building permission	for the plants. To reach these targets, negotiations with local public, local
ers		companies and meetings with people involved are very necessary.
arri	Shortage of local construction	Chile's construction code and standards will be used as the first
y B	code and standards	reference. Other successful projects' code and standard will be
Technology Barriers		considered as secondary reference in similar islands.
hnc	Unknown Current situation of	Investigation on local infrastructure is to find out the best solution for
Tec	applicable public infrastructure	wastewater transportation, electricity lines and best location for biogas
		plants. The possibility of using the current system will be considered.
	Undeveloped technology leads to	Providing technology support and cooperating with local companies to
	most of the project equipment	maximize the local technology conditions are the initial steps to achieve
	depending on oversea support.	product localization, in order to reduce transportation cost, long term
		investment on thermal solar equipment and supply of spare product.
	Lack of public support and	A serial of poll and activities will be taken in local communities to
	awareness	generate public support and interest in renewable energy. Private
an		meetings, seminars, negotiation and financial support will be used.
um	Lack of skillful local labors	Firstly transfer technology including construction, installation, operation,
d H Ba	serving for the project	and management to skilled locals, which are needed in infrastructure and
lan		energy projects. Then majority of then were paid to work for the project,
Social and Human Resource Barriers		and others transfer information and technology into communities.
X X	Lack of environmental	Enhance the awareness of environmental protection. Provide waste and
	management technology	wastewater handling technology and saving energy and water
		measurements.

Note: Education time line can be found in project framework (Appendix 1).

The Description of Energy Supply System


a) THERMAL SOLAR ENERGY - Hot water Supply

Average Temperature, Precipitation, & Humidity												
Temp (° <i>C</i>)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Max Temp	26	27	26	24	24	20	20	20	20	22	23	23
Min Temp	19	19	20	18	17	16	15	15	15	15	17	18

Table 3 The Local Climate Description (Without data showing cloudy days):

The average temperature in Easter Island is 18 ° C.

2. The Hot Water System for Family Houses:

The solar hot water system is used for sanitary hot water (home use). The specifications of the system are natural flow of water (no pumps needed), plane collectors with glass cover and indirect heat exchange with 2 circuits (the water used is not the water that circulates through the collector). This set up is preferred here although the efficiency is lower. Water is heated as it circulates through solar collectors, which are located on the roof of the house. The heated water is then stored in an insulated storage tank. An auxiliary biogas boiler is also included in the system, to boost water temperature on days

Figure 2 The principle of Thermal Solar

<u>Specifications of Single House System:</u> 175 litre tank that yields to 2.5 m^2 of collector surface.

when solar energy may be insufficient to meet all your hot water requirements.

Number of people	1-2	3-4	5-6
Hot water load	Small load	Average load	Large load
Daily capacity	80 - 120 liters	120 - 200 liters	More than liters

Average efficiency: between 45-55 %

Table 4: System Size

Based on the correlation used by the PROSOL program (Spain 2005) the reference price of such system is: FINAL PRICE = RPIN + RPW

$$\label{eq:RPIN} \begin{split} \textbf{RPIN} = \textbf{RPIB} \, \cdot \textbf{TF} + \textbf{RPIB} \, \cdot \textbf{E} + \textbf{RPIB} \, \cdot \textbf{IF} \cdot \textbf{TF} \text{ ; } \textbf{RPW} = 0.1 \cdot \textbf{RPIB} \end{split}$$

RPIB	Base reference investment price	1299.98 USD
TF	Type of installation factor	1,12
Е	Efficiency factor	0,12
Е	Integration factor	0,07
RPIN	Reference price of investment	1732.67 USD
RPW	Reference price of warranty	173.25 USD
TOTAL I	PRICE (1 house)	1905.91 USD

Table 5 The Reference price

This is the price for one single installation. Considering that we have 1416 houses, the price will be lower. If the collectors are built by the locals, as a part of the educational program, a reduction factor of 0.8 can be applied: Total Price for family houses = $0.4 \times 1905 \times 1416 = 1.082$ Million USD

3. The Hot Water System for Hotel and Public Services Use

Considering the tourism in the island, we can calculate the hot water volume as:

26,28 minifamilies/day * 2,5 people/minifamily * 40 l/person = 2628 l. Relating to the previous price, the cost will be 22891.75 USD

4. The installation Time: Installing the system in a single house: 1 week. 40 technicians working in parallel on 13 houses at the same time will install the hot water supply system in 2 years for the whole island.

b) **BIOGAS** – Cooking resources

Facts	Population	Agriculture	Cattle	Wastewater & Sewage
Values	3790 inhabitants	1.968Km2	Cows: 3152, Sheep: 80, Goats:97,	4000lt/day of wastewater
			Pigs:30, Chicken:1914	generated

Table 6 Local Nature Resources Description (Based on the local data from Tender for the Government of Chile)

2. The Principle of Biogas System in Easter Island

Due to the potential danger from infiltration of black waters to the ground water, the drinking water resource in Easter Island, the human waste and animal waste should be treated in order to provide a sanitary living condition to locals. The planning treating system includes: waste collectors, waste water treatment plants, and anaerobic digestion plants. The water treatment plants and the digestion plants are integrated in the neighborhood pyramids. The biogas will be mainly used on cooking in local place, and it will be supplied in the same way than propane is supplied now.

3. The Sspecifications of the System

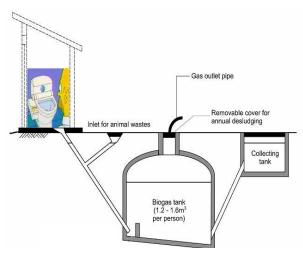


Figure 4 The Principle of Biogas System

population growth.

4. The collection methods

To collect the solid waste, 2 trucks and 2 drivers are required. And to collect the animal waste, 20 to 30 containers for the farmers will be provided.

c) GEOTHERMAL ENERGY -Electricity Supply

1. The General Description of Local geothermal resources:

Easter Island and Chile are located in the Nazca Plate. Based on the research from the Global Volcanism Program, the Volcano type in Chile belongs to hydrothermal field, where the geothermal resource is usually high temperature hot water. The high temperature reservoirs are the ones suitable for, and sought out for commercial production of electricity. Based on the information given in the tender, which write like "geothermal has high potential, non- active

Heating Power:

Propane: 11103.6 Kcal/Kg = 4.6413e+004 KJ /Kg Methane: 11974.4 Kcal/Kg = 5.0053e+004 KJ/Kg Biogas: 60 % methane (weight) = 3.0032e+004 KJ/Kg And one cow = 2.7273 kg natural gas/day (One cow model)

Based on previous project results (Rwanda prisons in 1999), we can say that from the people in the city we can obtain biogas for 350 people. Considering this, our need for gas is now becoming 358, 52 Kg biogas per day, which is equal to 135 cows. We consider 200 cows in our project, which produce 10900 Kg/day of manure, in order to take over the future

volcanoes", the geothermal energy seems to be the best choice for electricity production.

Binary Cycle Power Plant

From the calculation, the total consumption in current stage is equal to 3932, 64 MWh/year. Considering that the geothermal station working time efficiency is 90 %, the power needed right now is equal to 0.4988 MW. Moreover, considering an electric consumption growth rate of 8 % for 30 years, the power needed for the electricity plant is equal to 5.0313 MW $(0.4988 * (1+0.08)^{30} = 5.0313 MW)$.

So the final design power is 6 MW. It is preferred to build the whole 6 MW plant now, to avoid future upgrades, which will lead to high transport and construction costs due to the island location.

Figure 4 The Principle of Geothermal System

2. The Specifications of the System

Moreover, 6 MW is the average power for common geothermal wells.

A binary plant will be used, based on the kalina cycle consisting in a water-ammonia work fluid circuit, and a water circuit. By using of this, the cost can deduce 25% of the total cost. The advantage of the Binary Cycle plant is that they can operate with lower temperature waters. They also produce no air emissions. (Renewable Energy Power for a Sustainable Future, 1998). In this project, one production well and one re-injection well will be developed, since the average power for one product well is 6MW.

3. Cost of the plant.

Research and design: 60000 USD Prospecting: 2 wells of 700 m. * 170 USD/m = 238000 USD Development: 2 wells of 700 m * 170 USD/m = 238000 USD Power plant construction: Building, turbines, offices, piping system, and others 3.5 Million USD Factor applied due to transport costs (shipping) and risk insurance: 1.5 TOTAL PRICE: 6 024 000 USD

4. The employment:

Two engineers, six technicians and ten workers are the expected employees from that plant.

5. Landscape

The land use is only 23 acres, and the visual impact is much lower than with other technologies. The accurate location will be decided after sufficient research in the island.

6. The Cost of Operation and Maintenance

The total cost for operation and maintenance of the plant is around 10.3 USD / MWh produced. This value can be considered 45% for steam fields and 55% for the plant itself.

The value considered is fairly high, but future increases of costs along the working life of the plant are included in that way.

7. The CO₂ Emission

In a geothermal plant using the binary cycle technology, 90.91 Kg of CO₂ are produced for each 1000 MWh obtained in the plant.

The Upgrade of Associated Infrastructure

General Description

With upgrade of infrastructure on Rapa Nui we considered to apply biogas production, hot water solar collectors, solid and water waste management, methods as trash pre-sort, composting, recycling of waste. The goals of upgrading are turning toward energy saving technology, more efficient use of energy, finding possibilities to produce renewable energy in the house, creating advanced waste management systems and forming symbiosis or coexistence between the traditional ways of life of the islanders and new technologies. There are three ways of upgrade depending on tenant preferences and the position of the house on the island, upgrading the single family houses as single systems for houses that are far from Hanga Roa, upgrading the base neighborhoods and constructing pyramids in Hanga Roa and constructing of new sustainable neighborhoods (see *Appendix 1*).

System	No.	Associated Infrastructure	Methodology
r System	1	The installation of thermal solar collectors	Collector will be installed on a concrete platform on house's roof. Before the installation, safeguard should be considered to ensure the installation don't effect the house structure and carrying capacity.
Thermal Solar System	2	Water supply system	Although the annual temputerature is high enough, the attemperator will be considered to reduce the heat lose along the water supply pipes. Pipes will be installed in a stable way and fixed on the wall. The choice of pipe material will combine the local sunlight and intensity, economy capacity, sanitation requirement and hot water temperature.
	1	Solid waste collection	See Energy Appendix-4.
ant	2	Wastewater transportation system	In currect stage and based on the sustainable concept in this project, 70 houses were considered as a community. Each community will have its own pyramid, which combine wastewater treatment plant and biogas plant.First step, the current wastewater transportation system will be studied and found out the possibility to rebuild. Second step, when there are no possibility to use the current one, the upgrade new system will be built. The end of the community pipe system is the pyramid.In construction period, reduce the effect to local society, suitable raw material and stable installtion will be considered as principles. Due to the lack of construction code, other substitutes is mentioned in education part. The basic sanitation equipment will be considered to update in order to save water and energy with consideration of the local economic capacity and the islanders' need.
3 material for biogas plant. The extra wastewater will be treated lack of information, the quality of the input water is unknow wastewater is considered mostly as human waste. Obeying th P.R.China, the treatment grade will be biochemistry treatment products will be treated water and solid waste. The treated w			Based on the technology process of biogas, most of the wastewater will be used as raw material for biogas plant. The extra wastewater will be treated in this plant. Due to the lack of information, the quality of the input water is unknown. But in general, the wastewater is considered mostly as human waste. Obeying the design code in P.R.China, the treatment grade will be biochemistry treatment process. The end products will be treated water and solid waste. The treated water will be processed by particular treatment and reached safe standard to drain into rivers. The solid waste will be used as raw material for produce biogas.
	4	Biogas Transportation	As mentioned in energy description, the biogas will be bottled and distributed in the same way it has been done now. 2 Trucks (one for use and one for substitute) will be used as transportation equipments.
	5	Water supply system	The new plants' water supply system will be joined with local water supply system.
Geothermal Plant	1	Power Line	The possibility of using current power grid will be studied first. The rebuild of the transportation and distribution power line will consider the capacity of the need of current consumption and future use. The rebuild of the system will based on the principle of safety and reducing effect to the local environment, animals and farming land. The rebuild of the distribution system will be combining with the future local urban planning and reduce visual impact in cities. The end users include local families, hotels, other public service constructions, future biogas plants and geothermal plant itself.
Geoth	2	Wastewater treatment system	The after-use geothermal hotwater will be re-injected into the ground to avoid the impact to ground water. The measurements were mentioned in energy Appendix-4.
	3	Water supply system	The new plants' water supply system will be joined with local water supply system.

To attract investments to Chile it is important to record current Risks and Creditworthiness and other issues that are taken into consideration during decision - making process.

As World Bank and Insurance Company stated, Chile represents low risks because of exposure is low, development management capacities are strong, and the track record of achieving development impact is high. The country possesses strong institutions and has followed consistent and prudent policies (Chile CSA).

As a risk management measure, mitigating against possible adverse external events from available World Bank instruments, the Chilean Government has selected the Deferred Draw-down Option (Chile CSA).

Financial risk management instruments adapted for renewable energy technology are Alternative Risk Transfer products, particularly, Finite Risk and Contingent Capital Programs (*Marketplace Realities and Risk Management Solutions. Global Perspectives 2003*).

Finite risk is a multi-year risk financing technique that blends elements of pure financing with risk transfer to smoothes out volatility of events that adversely impact earning/cash flows. Finite risks include risks such as E&O, General Liability, Products Liability, Environmental Liability and Property, Completed Operations exposures for large residential contractors. Finite risk policy is addressed towards risk that losses occur faster than expected.

Contingent Capital Programme complements Finite risk approach. A Contingent Capital Program is insurance policy basic principle is an arrangement where a company purchases an option to issue securities (either debt or preferred shares) to an insurance company upon the occurrence of a predefined event. The event can be an insurance loss or other measurable event (such as economic downturn) that has the potential to cause excessive financial harm. The program is intended to guarantee availability of capital at a time when the company may be financially stressed. Finite risk policy is addressed towards risk that any contingent event that suddenly damages the capital structure of a project (*Marketplace Realities and Risk Management Solutions. Global Perspectives 2003*).

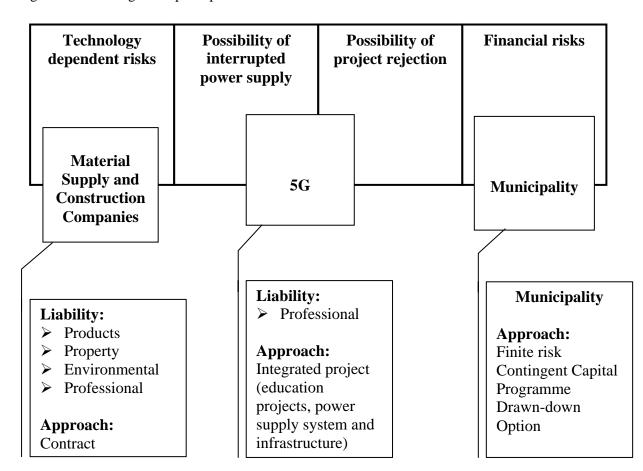


Figure 5 risk management principle scheme

The major risks and mitigation means

Major risk	Means to mitigate
Delays	Not relevant
Solar thermal hot water	
Fabrication damages/losses	Insurance and performance guarantee;
Transport damages/losses	Solar thermal equipment supply company carry all risks and
Installation damages/losses	relevant cost
Construction damages/losses	
Operation damages/losses	
Weather damage	
Biogas	
Technology	Supply company carry all risks and relevant cost;
Operation	Long – term contracts
Resource quantity and quality	Strict safety procedures are needed, as are loss controls such as
	fire fighting equipment and services. High rate of amortization
Planning opposition associated	
with odour problems	
Geothermal electricity –	
generation plant	
Drilling expenses and associated	Limited experience of operators and certain aspects of
risk	technology in different locations
Exploration risk	Contingencies
Critical component failure	
Long lead times	

(Financial Risk Management Instruments for Renewable Energy Projects United Nations Environment Programme)

Cost -Benefit Analysis

Costs and benefits	Upgrading / Biomass / biogas and Geothermal power supply Project
Direct benefit	1,947,117
Revenue from the sales of energy (estimating community's	
willingness to pay)	720,000
Selling CO2 *	
Value attributed to lesser dependence on energy from broad	1,227,117
Physical inputs	9,384,326
Education & research institute	300,000
Establishment	20,000
Operation	96,000
Materials	12,000
Personnel	84,000
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Sustainability Seminars and Training for the Local Community	16,000
Research Projects, Monitoring and Evaluation	168,000
Upgrading of the Rural Area Single Family Houses as	
Single Systems	<u>326,040</u>
Design and permit obtaining process	<u>6,000</u>
Construction & Transport	<u>320,040</u>
Hot water solar collector system	320,040
Upgrading of the Base Neighbourhoods and Constructing	
Pyramids (20)	<u>2,668,286</u>
Design	<u>10,000</u>
Construction&Transport	<u>51,100</u>
Ground works	3,700
Concrete works	10,100
Stonemason works	1,800
Carpenter works	2,100
Installation of equipment	3,400
Wastewater pipelines (50-70 houses)	30,000
Materials	43,000
Biogas digester	30,000
Additional equipment	3,000
Wastewater pipelines (50-70 houses)	10,000
Neighbourhood house upgrade	776,286

Costs and benefits	Upgrading / Biomass / biogas and Geothermal power supply Project
Geothermal electricity – generation plant	<u>6,054,000</u>
Design	90,000
Construction and Materials	5,250,000
Exploration	357,000
Development	357,000
Research and consultancy	<u>36,000</u>
EIA	36,000
<u>Socio – economic costs</u>	<u>1,591,840</u>
Externalities (negative)	1,591,840
Additional net costs for local authorities to connect a new	
plant to existing transport infrastructure	100,000
Increase in public facilities costs	3,000
Due to opening of building sites	291,640
housing	17,640
historical/ cultural heritage ***	
Raw material and land (loss to society by diversion)	4,000
productive/ service functions	270,000
Environmental	<u>1,197,200</u>
costs of measures necessary to neutralise possible negative	
effects on environment driven from project	12,000
loss of land, which could be used for agriculture	14,000
visual impact	144,000
Anthropogenic load	1,027,200
Costs and benefits	Upgrading / Biomass / biogas and Geothermal power supply Project
<u>Socio – economic benefits</u>	<u>3,358,200</u>
Additional employment (additional income generated by job	
creation; accounted for direct and indirect net output resulting	
from the project)	2,956,200
Increase in demand for residences and hotels	168,000
Decreasing costs for heating	190,000
Waste management	44,000
Other Implementation costs	1,200,000
Consulting	1,200,000
Financial planning/analysis	
Economic rate of return (ERR)	0.13
Economic net present value (ENVP)	17,519,079
% payment	8,184,263

* Income not included due to insignificance for particular project *** on this position will be not costs

NPV and IRR for business sector

			1 year	of Project	2 year o	of Project	3 year	of Project	4 year o	of Project	5 year	of Project	10 year o	of Project	15 year	of Project
Costs&income /Years		%	\$	executed %	\$	executed %	\$	executed %	\$	executed %	\$	executed %	\$	executed %	\$	executed %
Investment	7,787,550		340,800		336,000		3,073,350		2,249,900		696,600		957,000		133,900	
Risk Capital	3,270,771	42		0.00		0	1,646,900	50	1,097,933	34	132,600	4	393,338	12		
Consumer Finance	700,880	9	30,000	0.92	30,000	4	208,000	30	234,000	33	30,000	4	168,880	24		
Mezzanine finance	3,815,900	49	310,800	8.14	306,000	9	1,218,450	37	917,967	28	534,000	16	394,783	12	133,900	4
0	7 707 550		0.40,000	4.00			0.070.050		0.040.000		000.000	-	057.000	10	100.000	
Costs	7,787,550		340,800	4.38	336,000		3,073,350		2,249,900		,	9	957,000	12	133,900	2
Education & research institute	300,000	3.85	30,000	10.00	30,000	10.00	30,000	10.00	30,000	10.00	30,000	10.00	150,000	50.00		
Upgrading of the Single Family																
Houses as Single Systems	664,300	8.53	7,800	1.17	39,000	6	39,000	6	39,000	6	132,600	20	273,000	41	133,900	20
Upgrading of the Base																
Neighborhoods and Constructing																
Pyramids	2,670,000	34.29	267,000	10	267,000	10	534,000	20	534,000	20	534,000	20	534,000	20		
Geothermal electricity – generation plant	4,117,250	52.87					2,470,350	60	1,646,900	40						
Research and consultancy	36,000	0.46	36,000	100.00												
Maintanance costs											57,333		274,000		274,000	
Capital costs					857,154		857,154		857,154		857,154		4,285,772		4,285,772	
Income					1,621,400		3,150,400		3,239,190		2,585,836		13,478,565		27,097,901	
					1,021,400		0,100,400		0,200,100		2,000,000		10,470,000		21,001,001	
Balance	0	100	-73,800		1,018,400		77,050		132,135		974,748		7,961,793		22,404,229	

The Net Present Value for Project is 17 519 079 USD (10% sicount rate) and the Economical Reate of Retur - 13%

The income is calculated by taking into account power and gas consumption. The current average costs per households are 52 USD/month. In case of project implementation, the cost will decrease to 37 USD

The income from tourist amount increase is added to income form facilities fees. The assumptions are - 5% increase per year and from total income 40% will be used for balancing cash flow.

NPV and IRR for society

Octobel Simony Manual	1 year of Project implementation	2 year of Project implementation	3 year of Project implementation	4 year of Project implementation	5 year of Project implementation	10 year of Project implementation	15 year of Project implementation
Costs&income /Years	\$	\$	\$	\$	\$	\$	\$
Investment	30,000	30,000	208,000	234,000	30,000	168,880	0
Consumer Finance	30,000	30,000	208,000	234,000	30,000	168,880	
Costs	906,911	1,795,265	1,795,265	1,795,265	1,568,187	8,264,589	10,725,781
Capital costs	300,311	857,154			857,154		
Costs for public facilities *	899,111	899,111	899,111	899,111	521,100		, ,
Upgrading of the Single Family							
Houses as Single Systems	7,800	39,000	39,000	39,000		,	,
Mainance					57,333	274,000	274,000
Income	1,411,200	3,212,400	4,267,200	4,341,600	4,954,560	12,955,440	17,000,400
Additional employment (additional income generated by job creation; accounted for direct and indirect net output resulting		1 264 400	1 010 160	2 728 800	2 274 560	2 5 4 7 4 4 0	5 012 400
from the project) Increase in income form increasing		1,364,400	1,910,160	2,728,800	3,274,560	3,547,440	5,912,400
tourists	1,411,200	1,848,000	2,357,040	1,612,800	1,680,000	9,408,000	11,088,000
Balance	504,289	1,387,135	2,263,935	2,312,335	3,356,373	4,521,971	6,274,619

The Net Present Value for Project is 12 741570 USD (10% discount rate)

* during first four years current costs will remain

Footnote:

We needed to make changes, and created simplified view report.

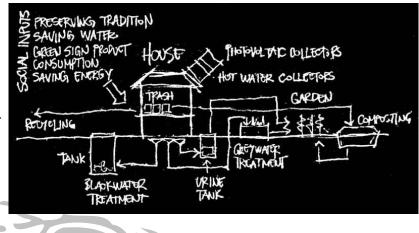
I am adding the original Gantt chart and the infrastructure appendix which was left out.

ID	ask Name		002 2005 2008 2011 2014 2017 2020 2023 2026 2029	J	2032
	Rapa Nui Project	7735 days			
2	Education	1735 days			
3	Baseline Research Project for Infrastructure and Energy	3 mons	Environmentalist,Economist,Architect,Engineer[3],Money[36,000]		
4	Establishing the Education Center for Renewables, Preservation of Cultural Heritage and Eco-tourism	1 mon			
5	Sustainability Seminars and Training for the	185 days			
6	Local Community Seminar on the Concepts of Sustainability	1 wk	Money[3,000],Environmentalist,Economist,Social Scientist		
7	Seminar on Cultural Changes and Preserving of	1 wk	Money[1,000],Social Scientist		
	Tradition				
8	Seminar on Hot Water Collector Systems	1 wk	Money[1,000],Engineer		
9	Seminar on Photovoltaic Collectors Systems	1 wk	Money[1,000],Engineer		
10	Seminar on Renewable Energy Systems	1 wk	Money[1,000],Engineer		
11	Seminar on Saving Water and Energy	1 wk	Money[3,000],Environmentalist,Economist,Social Scientist		
12	Seminar on Green Sign Product Consumption	1 wk	_Mohey[3,000],Environmentalist,Economist,Social Scientist		
13	Seminar on Grey Water Treatment Systems	1 wk	Money[1,000],Engineer		
14	Seminar on Urine Separation Systems	1 wk	Money[1,000],Engineer		
15	Seminar on Wastewater Treatment Systems	1 wk	Money[1,000],Engineer		
16	Research Projects, Monitoring and Evaluation	1380 days			
17	Research, Monitoring and Evaluation of the	12 mons			
17	Upgrade of Single Family Houses Project	12 mons	Architect,Engineer,Social Scientist,Environmentalist,Economist,Money[60,000]		
18	Research, Monitoring and Evaluation of the Upgrade of the Base Neighborhood and Constructing Pyramid Project	12 mons	Architect[19.93],Engineer[19.93],Social Scientist[19.93],Environmentalist[19.93],Economist[19.93],Lawyer[19.93],Money[72,000]		
19	Research, Monitoring and Evaluation of the	12 mons	Architect, Engineer, Social Scientist, Environmentalist, Economist, Money[1], Lawyer		
20	New Sustainable Neighborhood Project				
20	Public Participation Review of the Strategy Project for Infrastructure	1 mon 1 mon	Architect,Engineer,Social Scientist,Environmentalist,Economist,Money[1],Lawyer		
			-Architect,Engineer[3],Social Scientist,Environmentalist,Economist,Money[1],Lawyer		
22	Infrastructure	7675 days			
23	Strategy Project for Infrastructure	85 days			
24 25	Design of the Project	3 mons	Environmentalist, Economist, Architect, Engineer[3], Money[30,000]		
25 26	First Version of the Project Public Participation	0 mons 1 wk			
20	Review of the Project and Final Decision	1 mon	Money[1 000],Environmentalist,Architect,Social Scientist,Engineer,Economist		
28	Final Version of the Project	0 mons	Environmentalist, Economist, Architect, Engineer[3], Money[10,000]		
29	Construction Phase	1310 days			
30	Upgrade of 10 Single Family Houses	210 days			
37	Upgrade of Base Neighborhood and	300 days			
	Constructing Pyramid				
38 39	Constructing the Pyramid	260 days			
40	Design of the Pyramid Project Ground Works	3 mons 1 mon			
40	Concrete Works	3 mons			
42	Stonemason Works	1 mon			
43	Carpenter Works	3 mons			
44	Installations of Equipment	3 mons			
45	Additional Costs	1 mon			
46	Wastewater Pipelines	1 mon			
47	Upgrading of 50 Single Family Houses	15 mons			
48	Construction of New Sustainable	600 days			
40	Neighborhood				
49 50	Design of the Housing Project	3 mons 9 mons			
50 51	Constructing the Pyramid Constructing of 50 Housing Units	9 mons 15 mons			
52	Additional Construction Works	3 mons			
53	Construction Phase	6000 days			
54	Upgrade of 100 Single Family Houses	1500 days	Architect[2],Engineer[4],Handyman[20],Machine[1],Worker[40],Money[2,737,000]		
55	Upgrade of 10 Base Neighborhoods	3000 days	Architect,Engineer[3],Handyman[20],Machine[6],Worl	rker[40],Money[18,25(0,000],Craftsman[20]
56	Upgrade of 100 Single Family Houses	1500 days	Architect[2],Engineer[4],Handyman[20],Machine[1],W		
57	Construction of New Sustainable Neighborhood	600 days	Architect[3],Engineer[3],Handyma		
58	Upgrade of 100 Single Family Houses	1500 days		Archi	tect[2],Engineer[4],H
59	Construction of New Sustainable Neighborhood	600 days			Archit
60 61	Upgrade of 10 Base Neighborhoods	3000 days			
62	Energy Strategy Project for Energy	995 days			
62	Strategy Project for Energy Design of the Energy Strategy Project	85 days 3 mons	Engineer[3],Environmentalist,Economist,Money[30,000]		
64	Public Participation	3 mons	Engineer[3],Environmentalist,Economist,Money[1,000]		
65	Review of the Project and Final Decision	1 mon	Engineer[3],Environmentalist,Economist,Money[10,000]		
66	Final Version of the Project	0 mons			
67	Geotermal Plant	400 days			
68	Prospection Phase	1 mon	Engineer[3],Machine[1],Worker[10],Money[1,670,000]		
69	Development Phase	1 mon	Engineer[3],Machine[1],Worker[10],Money[1,800,000]		
70	Construction Phase	18 mons	Engineer[3],Architect,Machine[6],Handyman[4],Worker[20],Money[10,540,000]		
Proie	rt: Rapa Nui Project Task		Split Progress Milestone Summary Project Summary External Tasks		External Mileston
	Sat 3/5/05				
1			Page 1		

Page 1

	2035	2038	2041	2044
n[20]				
y[8,959,50	00],Craftsman[20]			
r[4],Handy	yman[20],Machine[1],Wor	ker[40],Money[2,737,000]		
rchitect[3],Engineer[3],Handyman[20],Machine[11],Worker[8	0],Money[8,959,500],Craft	sman[20]
A	Architect,Engineer[3],Han	dyman[20],Machine[6],Wo	rker[40],Money[18,250,00	0],Craftsman[20]
estone 🔌		dline 🖓		
		~		

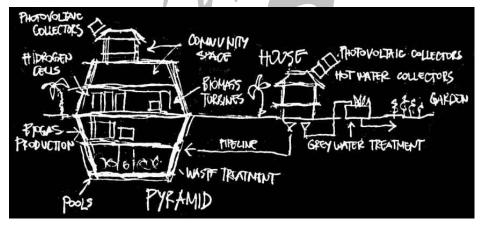
In text


With upgrade of infrastructure on Rapa Nui we considered apply of technologies as photovoltaic collectors and hydrogen cells, biogas production, hot water solar collectors, solid and water waste management, methods as trash pre-sort, composting, recycling of waste, urine separation and grey and black water treatment combined with social programs for sustainable consciousness as water and energy conservation and preservation of culture heritage and local traditions. (Minderman et al. 2004)

The goals of upgrading are turning toward energy saving technology, more efficient use of energy, finding possibilities to produce renewable energy in the house, creating advanced waste management systems and forming symbiosis or coexistence between the traditional ways of life of the islanders and new technologies. There are three ways of upgrade depending on tenant preferences and the position of the house on the island, upgrading the single family houses as single systems for houses that are far from Hanga Roa, upgrading the base neighborhoods and constructing pyramids in Hanga Roa and constructing of new sustainable neighborhoods (see Appendix 7).

APPENDIX 7

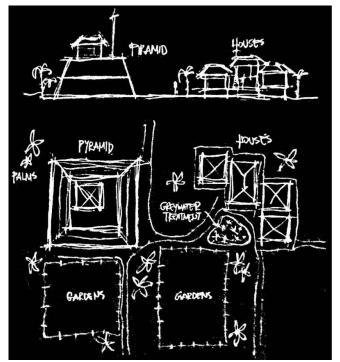
Upgrading of the Single Family Houses as Single Systems


In this concept the goals are reached by tenant preferences. Tenants choose to apply the new technologies to save or produce energy and resources. The basic prerequisite for this upgrade is enabling access to sustainable technology and informed local community in the principles of sustainable housing. The tenants could find information about different sustainable housing techniques on media's, like TV or internet, or through programmes for education and training, like seminars or lectures.

Upgrading of the Base Neighborhoods and Constructing Pyramids

In 1947, Thor Heyerdahl and his five-person crew climbed aboard Kon-Tiki, an experimental balsa raft, and swept atop the Pacific's Humboldt Current from Peru to the Tuamotu islands - and into history. His achievement, Heyerdahl announced to the world, proved that New World mariners from the east might have sailed into Polynesia, contradicting the general assumption that it had been populated from the west.

Among the pyramids of Túcume, Peru, from 1988 to 1993, Heyerdahl found what he believed was proof of his original Kon-Tiki hypothesis: "Images of reed ships crewed by mythical men with bird heads" - symbolic motifs similar to others found in petroglyphs on Rapa Nui. (The Guardian, 2002)


The second concept is inspired by Kon-Tiki voyage and traditional stone houses on Rapa Nui. We propose building of stone pyramids on the outskirts of the neighborhoods. The pyramids act as waste treatment plants, energy production and

storage facilities and communal buildings. These cut-edge technology buildings need high skilled personnel which will coordinate with CEREC and their function depends on resolving number of problems that can occur on the field, like waste treatment odours, low efficiency of energy storage, lost of energy in the transformations, high costs of building and maintenance etc.

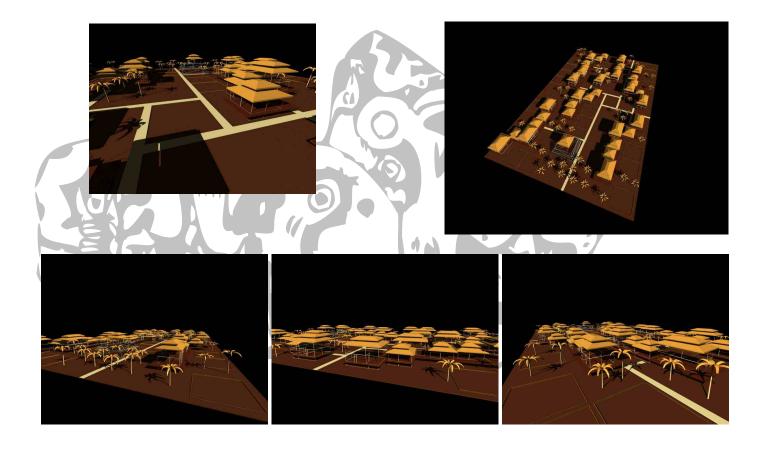
The first premise for this project is building an experimental model as a unity of education, infrastructure and energy that can be subject of research which will be conducted by CEREC. Our opinion is that the problems can be solved by the scientists with constant participation and help from Rapa Nui community. The experience from this project in that way can be used for communities in different places in Chile, Polynesia, South America and around the world.

Constructing of New Sustainable Neighborhoods

The new neighborhoods concept unites the elements of the first two, which means creating sustainable houses around the cut-edge technology pyramid. The proposed sustainable housing development for Rapa Nui includes 50-70 housing units that can accommodate 300 people, the population growth rate for 5-10 years.

The design of the sustainable neighborhoods project should is based on the next premises.

- Use of local building heritage and traditions
- ✤ Use of gardens
- Use of green or sustainable technologies in housing
- Flexibility of the housing units
- Tenant preferences


Polynesian architecture as local building heritage combined with the influence of South American continent is the main motif for the houses. That means preferably use of local building material and local craftsman skills.

Creation of private gardens is proposed for two reasons. The first is the traditional custom for the islanders to grow their own vegetable and fruits and the second is that the gardens are used for dumping the "environmental friendly" waste that is

generated by the houses. That is why it is proposed that the housing units in the project should have own private gardens depends on the tenant preferences.

The use of green or sustainable technologies is important for the new neighborhood. The tenants should have basic information about using these technologies, but it should not be prerequisite. The level of use of these technologies should be compatible with the tenant interest.

Flexibility of the housing units is seen from the idea of easily changing the structure of the neighborhood. Because the project has the tenants as the center, there is possibility for creating of rigid housing structures, a concept not very favorable. The housing units should have the possibility to follow the development of the culture and technology in the island population for many generations.

